Embedding Theorems of Function Classes, Iii

نویسنده

  • B. SIMONOV
چکیده

In this paper we obtain the necessary and sufficient conditions for embedding results of different function classes. The main result is a criterion for embedding theorems for the so-called generalized Weyl-Nikol’skii class and the generalized Lipschitz class. To define the Weyl-Nikol’skii class, we use the concept of a (λ, β)-derivative, which is a generalization of the derivative in the sense of Weyl. As corollaries, we give estimates of norms and moduli of smoothness of transformed Fourier series.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embedding Theorems of Function Classes, I

In this paper we study embedding theorems of function classes, which are subclasses of Lp, 1 ≤ p ≤ ∞. To define these classes, we use the notion of best trigonometric approximation as well as that of a (λ, β)-derivative, which is the generalization of a fractional derivative. Estimates of best approximations of transformed Fourier series are obtained.

متن کامل

Embedding theorems of function classes

In this paper we obtain the necessary and sufficient conditions for embedding results of different function classes. The main result is a criterion for embedding theorems for the socalled generalized Weyl-Nikol’skii class and the generalized Lipschitz class. To define the Weyl-Nikol’skii class, we use the concept of a (λ, β)-derivative, which is a generalization of the derivative in the sense o...

متن کامل

Embedding Theorems of Function Classes, Ii

In this paper the embedding results in the questions of strong approximation on Fourier series are considered. We prove several theorems on the interrelation between class W H β and class H(λ, p, r, ω) which was defined by L. Leindler. Previous related results from Leindler’s book [2] and the paper [5] are particular cases of our results.

متن کامل

Embedding Theorems for Cones and Applications to Classes of Convex Sets Occurring in Interval Mathematics

This paper gives a survey of embedding theorems for cones and their application to classes of convex sets occurring in interval

متن کامل

Rational Geraghty Contractive Mappings and Fixed Point Theorems in Ordered $b_2$-metric Spaces

In 2014, Zead Mustafa introduced $b_2$-metric spaces, as a generalization of both $2$-metric and $b$-metric spaces. Then new fixed point results for the classes of  rational Geraghty contractive mappings of type I,II and III in the setup of $b_2$-metric spaces are investigated. Then, we prove some fixed point theorems under various contractive conditions in partially ordered $b_2$-metric spaces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005